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New South Wales 2308, Australia 

Received 28 June 1984, in final form 14 August 1984 

Abstract. A numerical study of the properties of lattice trails on the honeycomb, square, 
triangular and simple cubic lattices is made. Critical points are estimated for all lattices, 
and upper and lower bounds established. Extensive series have been obtained, and series 
analysis of both trail generating functions and mean square end-to-end distance series are 
not inconsistent with the conclusion that the problem is in the same universaiity class as 
the self-avoiding walk problem. A pseudo star-triangle transformation is defined, and the 
analyticity properties of that function, coupled with previous exact results, clearly supports 
that conclusion for the triangular lattice, as well as providing excellent unbiased critical 
point estimates. 

We also show that the connective constant for d 3 2-dimensional hypercubic trails is 
strictly greater than the corresponding quantity for SAW'S. 

1. Introduction 

In a previous paper (Guttmann 1985) hereafter referred to as I we developed a number 
of exact results about lattice trails. The fundamental question is whether this problem 
belongs to the same universality class as does the self-avoiding walk (SAW) problem, 
and we showed in I that this question can be answered in the affirmative for the 
honeycomb lattice, and for the L lattice (an  oriented square lattice in which each step 
must be perpendicular to its predecessor). Recent series work by Zhou and Li (1984) 
raises the possibility that the two problems belong to different universality classes, and 
the purpose of this paper is to investigate our extended series expansions for the trail 
generating function and mean square end-to-end distances in order to establish critical 
point, critical exponent and amplitude estimates. We also obtain upper and lower 
bounds on the connective constants for some two- and three-dimensional lattices. 

The layout of the paper is as follows. In 5 2 we discuss and analyse our data on 
two-dimensional series, and  in 8 3 we d o  the same for the three-dimensional simple 
cubic lattice series. Section 4 is devoted to obtaining upper and lower bounds as well 
as proving that the connective constant for the d 5 2-dimensional hypercubic lattice 
SAW series is less than that for trails. In  § 5 we define a star-triangle substitution 
functior., and  argue on the basis of its singularity distribution that the triangular trails 
and SAW problem belong to the same universality class. Section 6 provides n summary 
of our results. 

0305-4470/85/040575 i- 14$02.25 0 1985 The Institute of Physics 575 



576 A J Guttmann 

2. Two-dimensional lattices 

In table 1 we give the series coefficient t ,  of the trail generating function (TGF) 

for the honeycomb (h) ,  square (s)  triangular (t)  and simple cubic (sc) lattices. The 
expansions for the s and t lattices were obtained to 22 and 16 terms respectively. We 
used a simple back-tracking algorithm, similar to that used to generate SAWS, as 
described in Guttmann (1984). The program was written in FORTRAN and run on a 
Perkin-Elmer 3220 mini-computer using the Unix V7 operating system. The program 
was totally CPU bound, to the extent that re-writing it in C produced a time saving of 

Table 1. Coefficients of the trail generating function for various lattices. 

~ ~~~~~ 

N Honeycomb Square Triangular Simple cubic 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1 
3 
6 

12 
24 
48 
96 

186 
360 
696 

I344  
2 562 
4 872 
9 288 

17 664 
33 384 
63 120 

1 I9  280 
225 072 
423 630 
797 400 

I 499 256 
2 817 216 
5 286 480 
9 918 768 

I8 592 080 
34 840 848 
65 228 874 

122 105 496 
228 402 168 
427 I76 336 
798 373 662 

1491985800 
2786515 176 
5203816992 
9712725234 

18 127267800 

1 
4 

12 
36 

I08 
316 
916 

2 628 
7 500 

21 268 
60 092 

169 092 
474 924 

I 329 188 
3 715 244 

10 359 636 
28 856 252 
80 220 244 

222 847 804 
618 083 972 

1713283628 
4742946484  

13 123882524 

I 
6 

30 
150 
738 

3 570 
17 118 
81 498 

385 710 
1 817 046 
8 528 478 

39 903 462 
186 I98 642 
866 861 394 

4027766490 
18 681 900 270 
86518735722 

I 
6 

30 
150 
750 

3 726 
18 438 
90 966 

447918 
2 201 622 

I O  809 006 
52 999 446 

259 668 942 
I271054982 
6218232414 

30399 142614 
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less than 3%. Total run time was 50-150 hours on each lattice. Problems of integer 
overflow also occurred, but these were overcome by noting the (machine-dependent) 
property that if 23’ < i < 2’*, then i is stored as j = i -232. 

For the honeycomb lattice we list 36 coefficients, obtained from the counting 
theorem given in I and the published data on honeycomb SAW’S and polygons. It is 
also known that the connective constant A = ( 2 + ~ 5 ) ” ~  for this lattice (Nienhuis 1982, 
1984) and that the critical expocent y = 43/32 where T ( x )  - A (  1 - A x ) - ’ .  Further, the 
amplitude A is exactly 4 / ( 2 + 4 2 )  times that for SAWS, as proved in I. 

In table 2 we present additional configurational information on the square lattice, 
including mean square end-to-end distances and other quantities used in establishing 
bounds. 

Table 2. Square lattice configurational data. p,c, = Xcn r 2 ,  (R; , )  = pnc, /cn,  bridging trails 
and irreducible bridging trails defined in text. 

n C,P, 

I 4 
2 32 
J 164 
4 704 
5 2 748 
6 10 096 
7 35 524 
8 121 056 
9 402 420 

I O  131 1 504 
1 1  4 205 476 
12 13 304 864 
13 41 612324 
14 128 878 736 
15 395 767 092 
16 I206315296 
17 3652739252 
18 10995977424 
19 32927997988 
20 98139646880 
21 291246749300 
22 860965 104720 

Bridging 
( R 3  trails 

Irreducible 
bridging 
trails 

1.000 000 000 
2.666 666 667 
4.555 555 556 
6.518 518518 
8.696 202 528 
11.021 834 06 
13.517 503 81 
16.140 800 00 
18.921 38424 
21.824935 I O  
24.870 934 17 
2801472236 
31.306 575 14 
34.689 171 42 
38.202 799 02 
41.804 295 86 
45.533 883 59 
49.342 992 08 
53.274 3 1 I 40 
57.281 611 32 
61.406 290 44 
65.602 926 84 

I 
3 
7 

17 
41 

101 
259 
669 

I731 
4 499 

1 I705 
30 623 
80 443 

21 I851 
558 999 

I 477 983 
3 914 393 

I O  384 023 
27 585 099 
73 366 563 

195 341 557 
520 640 553 

1 
1 

2 
2 
2 
4 

18 
48 
96 

194 
398 
992 

2 614 
6 496 

15 512 
37 536 
92 366 

231 544 
583 442 

1 464 452 
3 680 362 
9 310 622 

We first analyse the mean square end-to-end distance data, which we expect to be 
more useful in that the ‘critical point’ is precisely known. As we are only interested 
in the answer to the question ‘is the exponent the same as, or different from the 
corresponding exponent for the SAW model?’, we focus on the exponent difference by 
computing ( Ri)SAW/( Ri)trails. Denoting the corresponding exponents by 2v, and 2vt 
for SAW’S and trails respectively, we expect that 

rn = ( R i ) S A W / ( R i ) t r a l l a -  An4 

where 4 = 2( v, - v~). 
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In order to estimate the exponent 4, we form the sequence {4,,}, where +,, = 
In( r,,/ rn-2)/ln[n/( n - 2 ) ] .  Extrapolants of 4,,, formed from 0, = [n& - ( n  - 2 ) ~ j , - ~ ] / 2  
are also formed. (Alternate terms are used to minimise the oscillations characteristic 
of a loose-packed lattice.) In table 3 we show the data and the two sequences {A} 
and {e,,}. It is clear that 4,, is decreasing, and the last eight extrapolants {e,,} are all 
less than 0.008 in absolute value, implying that I v, - vtJ < 0.004. The conclusion that 
they are equal seems inescapable. 

Table 3. Analysis of square lattice mean square end-to-end distance series. { I&}  and {On} 
appear to be approaching zero. 

n (RT,) SAW'S ( R i )  trails rn 6 ,  

5 9.563 380 28 8.696 202 53 1.099719 0.186 081 0.465 202 
6 12.574 358 97 11.021 83406 1.140 859 0.135 204 0. I83 549 
7 15.556 16943 13.517 503 81 1 . I  50 8 I7 0.134980 0.007 229 

0.039 089 8 19.012 846 52 16.140 800 00 1.177 937 0.111 175 
0.043 3 18 9 22.41 1 359 72 18.92 I 384 24 1.184 446 0.114611 

I O  26.242 539 68 21.824935 I O  1.202 41 1 0.092 156 0.01 6 078 
I I  30.017 657 03 24.870 934 17 1.206 937 0.093 739 -0.000 I83 
12 34. I86 992 97 28.014 722 36 1.220 322 0.081 101 0.025 827 
13 38.304 340 33 3 1.306 575 14 1.223 524 0.081 705 0.015 515 
14 42.786 437 58 34.689 171 42 1.233 423 0.069 273 -0.001 693 
15 47.2177 46 61 38.202 799 02 1.235 976 0.070 761 -0.000 374 
16 5 1.992 530 70 41.804 295 86 1.243 712 0.062 208 0.012 755 
17 56.716411 65 45.533 883 59 1.245 587 0.061 886 -0.004 676 
18 61.766465 71 49.342 992 08 1.251 778 0.054 884 -0.003 708 
19 66.765 782 72 53.274 3 1 1 40 1.253 245 0.055 I I O  -0.002 491 
20 72.076 549 79 57.281 61 1 32 1.258 284 0.049 205 -0.001 91 1 
21 77.336 744 50 6 I ,406 290 44 1.259 427 0.049 163 -0.007 324 
22 82.895 8 I8 90 65.602 926 84 1.263 599 0.044 226 -0.005 559 

Our analysis of the trail generating function is less successful because, in comparing 
it to the walk generating function we are seeking a second-order effect. That is, the 
dominant difference is in the critical points, and any exponent difference will be a 
secondary effect, whereas for the mean square distance series, the critical point is the 
same, being 1. We have tried several standard methods of analysis. Firstly, Dlog Pade 
approximants suggest a critical point and critical exponent of 0.2213 and 1.41 respec- 
tively for the triangular lattice, and 0.3679 and 1.39 respectively for the square lattice. 
The estimates of the critical parameters are slowly decreasing, and are clearly some 
way away from the SAW value of 1.343 75. A careful study of the distribution of 
singularities in the complex plane, as estimated by Dlog Pad6 approximants, gives 
some clue as to the reason for this slow convergence. Taking the triangular lattice 
first, the approximants to the SAW series suggest a branch cut along the positive real 
axis from x, = 0.241 to 00, plus two conjugate pairs of singularities at x = (-0.40 * 0.32i) 
and x = (-0.20 + 0.60i). For the trails series on the other hand, as well as a branch cut 
from x, L- 0.22 1 to CO, there are two further branch cuts along the imaginary axis from 
+0.30i. A conjilgate pair of singularities at x = (-0.50 f 0.30i) can also be discerned. 
Thus for the trails case, we have non-physical singularities much loser to the physical 
disc 1x1 G x, than for the SAW case, which we expect to slow the rate of convergence 
(Baker and Graves-Morris 1981 1. A similar situation exists for the square lattice series, 
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where again there are branch cuts on the imaginary axis, with non-physical singularities 
quite close to the physical disc. 

If we assume that y = 1.343 75, biased Pad6 approximants to [f(~)]''~ give con- 
nective constant estimates of A = 4.525 (triangular) and 2.7215 (square). 

A ratio method analysis of the triangular lattice data is also quite instructive, and 
clearly shows the steady worsening of behaviour as one passes from the Ising problem 
to the SAW problem to the trails problem. Taking the values y =  1.75 for the Ising 
model susceptibility and y = 1.343 75 for the SAW and trails generating function, we 
analyse the three series, given by f ( x )  = C,X" by forming the following sequences: 

r n =  C n 1 C n - I  

P n  = r n  / ( 1 + ( Y - 1 1 I n 1 
~n = [ n 2 P n  - ( n -  U2~n-11/(2n - 1) 

~ n = [ n 3 u , - ( n - l ) 3 ~ n - 1 ] / ( 3 n 2 - 3 n + l ) .  

Each sequence should give successively more accurate estimates of the connective 
constant (or its Ising analogue). In table 4 we see that for the Ising model the Last 
entries in the sequence (8 , )  are accurate to six figures, the exact value being 2 + J 3  = 
3.732 0508. . . . For the SAW problem, the last entries in the sequence (6,) are in 
excellent agreement with the current 'best' estimate (Guttmann 1984) of 4.150 75, 
being accurate to five figures. For the trails problem, the sequences { P n }  and { p n }  are 
still changing in the fourth decimal digit with increasing n, and from the sequence 
{a,} one cannot say any more than A = 4.525 i 0.006, and even this may be considered 
excessively optimistic. 

This behaviour is, we believe, due to two factors. The first we have already discussed, 
and that is the presence of non-physical singularities close to the physical disc. The 
second factor is the possible presence of confluent singularities. The rapid change in 

Table 4. Analysis of triangular lattice data for the connective constant of the Ising, SAW 

and trails problem. As discussed in the text, it is clear that the series are increasingly 
difficult to analyse for this problem heirarchy. 

n 

2 
3 
4 
5 
6 
7 
8 
9 
IO 
I I  
12 
13 
14 
15 
16 

5.000 0000 
4.600 0000 
4.391 3043 
4.267 3261 
4.183 2947 
4.1203550 
4.072 8227 
4.035 8595 
4.005 1500 
3.981 7152 
3.961 2741 
3.943 9265 
3.929 0201 
3.9160731 
3.904 7229 

Ising model 
P n  cc. 

3.636 3636 3.705 6277 
3.680 0000 3.7 I4 9091 
3.697 9405 3.721 0069 
3.7107189 3.733 4360 
3.718 4841 3.736 1324 
3.721 6109 3.730 2697 
3.723 7236 3.730 6251 
3.725 4087 3.731 7527 
3.7266512 3.73 1 9480 
3.727 563 1 3.73 1 9056 
3.728 2579 3.731 9132 
3.728 8032 3.73 1 9443 
3.729 2394 3.731 9695 
3.729 5934 3.73 1 9862 
3.729 8846 3.731 9975 

4.235 0031 
3.718 8170 
3.725 4566 
3.746 4765 
3.739 8363 
3.720 2985 
3.731 3464 
3.7344132 
3.732 4734 
3.73 1 7776 
3.731 9386 
3.732 0588 
3.732 0709 
3.732 0587 
3.732 0502 
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Table 4. (continued) 

SAW problem 
P ,  Pm 8" 

2 5.000 0000 4.266 6667 4.200 5 I68 4.800 5906 
3 4.600 0000 4. I27 1028 4.015 4517 3.937 5296 
4 4.478 2609 4.123 8661 4. I 19 7047 4.195 7812 
5 4.417 4757 4.133 3106 4.150 1008 4.181 9919 
6 4.375 8242 4.1387106 4.150 983 1 4.152 1950 
7 4.343 0437 4.139 7523 4.1426371 4.128 4423 
8 4.319 9954 4.1420180 4.149 4195 4.163 1849 
9 4.301 673 I 4.143 4176 4.148 6866 4. I46 9573 

I O  4.286 9207 4.144 455 I 4.148 8779 4.149 3925 
11 4.274 9 I6 1 4.145 3732 4.149 7454 4.152 3664 
12 4.264 8407 4.146 0730 4.149 7544 4.149 7845 
13 4.256 3043 4. I46 657 I 4.1500216 4.15 1 0060 
14 4.248 9675 4.147 1404 4.150 1653 4. I50 7425 
15 4.242 5908 4.147 5429 4.1502635 4.150 6908 
16 4.236 9982 4.147 8835 4.1503556 4.150 7863 
17 4.232 05 I7 4.148 1732 4. I50 4203 4. I50 7448 
18 4.227 645 I 4.148 4217 4.150 4742 4. I50 7623 

Trails problem 
n rn P n  P" 6, 

2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 

5.000 0000 
5.000 0000 
4.920 0000 
4.837 3984 
4.794 9580 
4.760 9534 
4.732 7542 
4.7 I O  9123 
4.693 5950 
4.678 8491 
4.666 2278 
4.655 573 I 
4.646 3789 
4.638 2779 
4.631 1529 

4.266 6667 
4.485 98 I3 
4.530 6475 
4.526 2207 
4.535 1327 
4.538 1002 
4.537 7718 
4.537 6012 
4.537 6145 
4.537 0658 
4.536 2822 
4.535 6403 
4.535 0278 
4.534 3654 
4.533 7481 

4.200 5 168 
4.661 4330 
4.588 0754 
4.518 3509 
4.555 3872 
4.546 3181 
4.536 6989 
4.536 9589 
4.537 6712 
4.534 4532 
4.532 1594 
4.53 1 9433 
4.531 1936 
4.529 8883 
4.529 2681 

4.800 5906 
4.855 5030 
4.534 5442 
4.445 1972 
4.606 2612 
4.530 8937 
4.517 1757 
4.537 5724 
4.539 5874 
4.524 73 1 1 
4.524 4692 
4.531 1470 
4.528 1825 
4.5242121 
4.526 3648 

the sequencies {p,,} and {p , }  are indicative of the presence of a strong confluent term. 
A variety of methods were used to detect this term, but we found that none of the 
conventional methods were successful. This parallels our experience (Guttmann 1984) 
with the triangular lattice chain generating function. An alternative approach we 
adopted was to fit all the coefficients, suitably weighted, to an  assumed functional form 

T ( x )  = anx" = A , (  1 - Ax)-Y + A,( 1 - A X ) - ~ + " + A ~ (  1 - A x ) - y + '  
n = O  

with y fixed at  43/32. The fitting was done by the nonlinear regression program P3R, 
available on the BMDP package. The coefficients were weighted by A ", (with A = 4.53) 
so that higher-order coefficients were given much greater weight than earlier coefficients. 
This is in principle a powerful alternative method of series analysis, but much more 
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work needs to be done before it can be widely used. At present it is extremely sensitive 
to starting estimates and is also sensitive to weighting functions. A large number of 
trials had to be carried out before we could be confident that we had found a global 
minimum rather than a local minimum. We are pursuing this approach in the hope 
that a new and powerful series analysis method will evolve, but for the present we 
simply state the results for this case, which are: 

A = 4.5256, 

Ai = 1.023, A2= -0.513, A3 = 1.054. 

A = 0.51, 

No error estimates are quoted, though we expect A to be accurate to about four 
significant figures, A to one figure, A,  to two figures, and A,,A, to one figure. The 
results as quoted fit the data extremely well, and it is for this reason we give more 
significant figures than the accuracy of the parameters warrants. The noteworthy feature 
is the presence of a strong confluent term, and when this is included the data is entirely 
consistent with our assumption that the trails problem belongs to the same universality 
class as the SAW problem. 

For the square lattice, the characteristic odd-even oscillation added an extra 
complication to the above analysis. In the present primitive state of the new analysis 
method, we did not therefore pursue the square lattice analysis by that method. Apart 
from the Pad6 analysis mentioned previously, we also used the generalised ratio method 
of Sykes et a1 (1972), as applied by them to the SAW series. We again assumed that 
the exponent y = 43/32, and that the antiferromagnetic exponent was similar to that 
for walks (though the results were insensitive to this assumption). Our analysis gives 
A = 2.721 3 * 0.0007, in excellent agreement with the Pad6 analysis. We believe this 
result rules out the possibility that A = e = 2.7 I8 28 . . . as suggested by Malakis (1975) 
and Zhou and Li (1984). 

We have also obtained estimates for the critical amplitudes by forming Pad6 
approximants to (l /A - X ) [ T ( X ) ] ~ ” ~ ~ = ~ , ~ .  Using the estimates for A quoted earlier, 
and y=43/32,  the approximants were well converged, and we estimate AI = 1.10 
(square) and A,  = 0.99 (triangular), where T ( x )  - A, (  1 - A X ) - ” .  The estimate of A,  
agrees to within 3% with that found by our nonlinear regression, which latter method 
also takes into account the confluent correction term. 

3. Three-dimensional lattice 

In table 1 we give the first 15 coefficients of the simple cubic lattice trail generating 
function-again representing about 50 hours CPU time on a PE 3220 mini-computer. 

Pad6 analysis gave results consistent with the pattern observed for the two- 
dimensional series. Dlog Pad6 approximants were more scattered than their SAW 

counterparts, and many were defective. They appeared to converge to y =  1.12, A = 
4.8497. This value of y is significantly lower than the SAW exponent, believed to be 
around y = 1.1615 (Le Guillou and Zinn Justin 1980) from RG analysis. Again, we 
consider that this small discrepancy is due to closer non-physical singularities and 
confluent correction terms. 

Pad6 approximants to [T(x)]” ’  with y = 1.1615 give A =4.8426*0.008, while the 
confluent singularity analysis method of Adler et al (1982), while giving no convincing 
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evidence of a confluent singularity, did indicate a critical point of 1 / A  = 0.2065 = 
1/4.8426 with an exponent of y =  1.16. 

The extended ratio analysis (Sykes et a1 1972) of the previous section was also 
used, and gave A = 4.843 * 0.002, in agreement with the above analyses. 

This was in fact the worst behaved trail generating function series of the three, 
and the only conclusions we can draw are that (a) there is no evidence for a different 
universality class for the trails problem in three dimensions compared to the walks 
problem and (b) if we accept that y =  1.1615, the connective constant is then A = 
4.8426 * 0.002. 

For the amplitude, Pad6 analysis as described in the previous section gave A ,  = 0.95. 

4. Bounds on connective constants 

The various methods for determining upper and lower bounds on the value of the 
connective constant for self-avoiding walks are discussed in Guttmann ( 1983). These 
methods can all be applied mutatis mutandis to the trails problem. 

To find upper bounds, we use the method of Ahlberg and Janson (1982), which, 
after making the necessary changes appropriate to the trails problem, gives 

A S min( A,, A b )  (4.1) 

where A is the connective constant for trails, 

(4.2) 

(4.3 

l / ( n - l )  A , = ( t , / t , )  

qxn-' = [ t ,  -(q-2)tn. . ,]x+(q-2)[(q- l ) t , - ,  - t,] 

and Ab is the positive root of 

where q is the coordination number of the lattice. From our configurational data in 
table 1 we readily obtain 

A <4.929 (sc) ,  A <4.745 (triangular), A <2.851 (square). (4.4) 

To find lower bounds for the hypercubic lattice, we apply the method of Kesten 
(1963). Consider a d-dimensional hypercubic lattice, with unit lattice spacing. A 
terminally attached trail (TAT) is a trail whose first step, rooted at the origin, is in the 
+x direction, and which subsequently never crosses the .Y = 1 hyperplane. We denote 
the cardinality of n-step TAT'S by r,. Next we define bridging trails, with cardinality 
b,, as those TAT'S whose maximal x-coordinate is equal to the x-coordinate of the 
end-pGint vertex of the TAT. Finally, we define irreducible bridging trails, with cardinality 
s,, as those trails which cannot be decomposed into two concatenated bridging trails. 
Clearly t,  2 r, 3 b, 2 s,. 

Next, we outline a proof that lim,-= r:'" = limn+= b:'" = A. To prove this, we first 
define loop trails as trails whose first and last vertex are coincident. Let the cardinality 
of n-step loop trails be 1,. Following Hammersley (1961) we can transform these into 
bridging trails by first defining a right-most, top-most vertex and a left-most, bottom- 
most vertex and then cutting the loop trail at the first mentioned vertex and reflecting 
the 'top half' of the trail about the hyperplane through the other specified vertex (see 
figure l ( a ) ) .  Again following Hammersley (1961), it is possible to show that 
limn+= / > "  = A ,  while in I we proved that limn+% t i :  = A .  The construction above 
shows that each loop trail can be transformed into a distinct bridging trail, so that 
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Reflection tine 

9 
lbi 

It, 
Figure 1. ( a )  shows the transformation of a polygon into a bridge. LBV=left, bottom 
vertex; RTV = right, top vertex. ( b )  shows a 7-step irreducible bridging trail that is not an 
irreducible bridging walk. Extending this trail in the - y  direction produces a similar 
realisation for any greater number of steps. 

t ,  L r ,  3 b, L I,. This observation is sufficient to complete the proof that 
limn+= bi'" = A. 

r!,"' = 

The next step is to point out the lemma 

The proof is given by Kesten (1962) for SAW'S, and follows from the observation that 
each bridging trail can be expressed as the concatenation of an irreducible bridging 
trail of length m E [ 1, n]  and a bridging trail of length p = ( n  - m )  E [0, n - 11 since the 
first step of every bridging trail is an irreducible bridging trail. 

b,x" and 
S(x) = I,=, s,xn, it follows from the above lemma that B ( x )  = 1/[1-  S(x)], and hence 
that A - '  is the unique positive root of S(x) = 1. The proof of these last two remarks 
follows precisely Kesten's proof for the SAW analogue. Further, if A N  is the (unique) 
positive root of the poiynomial 

If we now define the corresponding generating functions B ( x )  = 

N 
s,A-," = 1 

n = I  

then 

A N  C A. 

(4.6) 

(4.7) 

Thus the enumeration of irreducible bridges allows a monotonic, non-decreasing 
sequence of lower bounds on A to be obtained, by solving the sequence of polynomials 
given by (4.6) with increasing N.  
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In table 2 we give the results for the first 22 terms of B ( x )  and S(x) for the square 
lattice. From these coefficients and the result (4.7) we finally obtain the bound 
A (square) > 2.6346. 

Following a suggestion of Whittington (private communication) we can also use a 
similar approach to prove that A > p for d-dimensional hypercubic lattices, where p 
is the connective constant for self-avoiding walks, as follows. Let s, be the cardinality 
of n-step irreducible bridging trails, as defined above, and let w, be the corresponding 
quantity for self-avoiding walks. Then from Kesten's result for SAW'S, and our 
analogous results for trails quoted above, we have that W ( x )  =ET=, w,xn is analytic 
in the disc 1x1 < p-l and continuous and strictly increasing in the interval 0 
and W ( p * - ' )  = 1. An analogous result holds for the trails problem, where S ( x )  = 
E:=, snxn is the analogue of W ( x )  and S(A-') = I .  By explicit construction (figure 
l ( b ) )  we show that w, < s, for n > 6, while it is obvious by direct enumeration that 
w, =s, for n s 6  (see table 2). Thus W ( x ) < S ( x )  for all x such that O < x s  
min(p- ' ,  A - ' ) .  It thus immediately follows that A - '  < p- l ,  or A > p. 

For the simple cubic lattice we have not generated bridging trails, but a useful 
numerical 'bound' is the SAW connective constant, ~ ( s c )  = 4.6835. This is of course 
only an estimate of p, so doesn't constitute a bound in the proper sense, unlike the 
square lattice result. Avery weak bound is provided by the SAW lower bound (Guttmann 
1983), p > 4.352. 

For the triangular lattice we have already proved in I that A > 4.222. Summarising 
the results of this section, we find 

- I  
x s /L 

2.634 < A (square) < 2.851 

4.222 < A (triangular) < 4.745 (4.8) 

(4.683) < A (sc) < 4.929 

where the sc 'lower bound' is parenthesised to indicate its second-class status! 

5. Substitution functions 

As discussed in I, by relating trails on the triangular lattice to those on the honeycomb 
lattice we can obtain an  analogue of the star-triangle transformation for trails. For 
the Ising problem, Fisher (1959) has given a transformation that relates the suscep- 
tibilities xT and xH of the triangular and honeycomb lattice respectively. That is 

X T (  = t{XH( w, + X H ( -  w)> ( 5 . 1 )  

w 2 = h ( u ) = v ( l + U ) / ( l + u ~ ) = U + U 2 - ~ U 4 - U ~ + u 7 + U ~ - U ' ~ -  . . . . (5.2) 

where 

For the self-avoiding walk problem we denote by C, and CH the chain generating 
functions of the triangular and honeycomb lattice SAW model respectively. Then by 
analogy we write 

c T ( x )  f< c H  ( Y  + C H  ( - y ) >  

which implicitly defines the function f through 
(5.3) 

y 2  = f ( x ) .  (5.4) 
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Following the development of Guttmann and Sykes (1973) we can obtain the first 17 
terms of the series expansion o f f  from the available expansions of C, and C H .  In 
that way we find 

f ( x )  = x + x 2  - 2x4 - x 5 +  3x6+  4x7+  12x8+ 5 7 x 9 t  1 27x1"+ 2 5 3 ~ "  + 9 0 7 ~ "  

+4224xI3 + 1 4 1 6 2 ~ ~ ~ + 4 3 8 1 7 x ~ ~  + 1 5 0 6 5 0 ~ ' ~ +  538790~"  + . . . (5.5) 

which corrects the last two coefficients of Guttmann and Sykes (1973). 

the triangular and honeycomb lattices respectively. Then we write 
For the trails problem we denote by TT and TH the trail generating functions for 

TT( z ,  = TH( ) + TH ( - ) 1 (5.6) 

which defines the function g through 

u2  = g( z ) .  (57) 

From the coefficients in table 1 and equations (5.6) and (5.7) we obtain the first 16 
terms in the expansion of g as 

g ( 2 )  = z + z 2 +  z3  + 3z4+ 3z5 + 13z6+47z7 + 73zs + 273z9+ 925Z'O+ 2089z" 

+ 4 9 3 5 ~ " +  1 0 4 0 3 ~ ' ~ + 2 2 3 1 9 ~ ~ ~ - 2 5 5 1 5 ~ ~ ~ - 4 9 1 2 4 1 ~ ' " .  . . (5.8) 

VHZ = h( v f ' )  (5.9) 

For the Ising model, the critical temperatures are related through 

where v H =  l / t a n h ( J / k T r ) = h  and v T =  l / t a n h ( J / k T T ) = 2 + J j .  Further, i t  follows 
from (5.1) that the susceptibilities on the two lattices have the same critical exponent 
unless the substitution function h is non-analytic at v = v;'. If h is non-analytic, further 
investigation is required to determine the change-if any-to the criti6al exponent. 
From (5.2) it is clear that h is non-analytic only at the cube roots of - 1, thus confirming 
the well known universality of exponents for the two-dimensional Ising model. 

For the S A W  and trails problem we have the corresponding results 
- 

pH2=f(&)  = (2+J2) -1  (5.10) 

and 

A,'=g(A;') = (2+J2)- '  (5 .1 1) 

where p and A are the connective constants for the SAW and trails problem respectively, 
and we have used Nienhuis' (1982) result for pH and our earlier result ( I )  that A H  = pH. 

Unlike the situation with the Ising problem f and g are not known except through 
their series expansions. If we accept the (unproven) assumption that a critical exponent 
exists for the previously defined generating functions, it again follows that this exponent 
must be the same for the triangular and honeycomb lattices provided that the substitu- 
tion function is non-singular at x = x, = 1 / @ T  for the SAW problem and at z = z, = 1 / A T  
for the trails problem. 

Accordingly, we have investigated the singularity structure of the functions f and 
g by studying Pad6 approximants to the logarithmic derivative o f f  and g. It is well 
known (see e.g. Gaunt and Guttmann 1974) that the distribution of zeros of the 
denominator polynomials gives a good estimate of the singularity distribution. 

Firstly, for the SAW substitution function f, a range of diagonal and  off-diagonal 
Dlog Pad6 approximants clearly indicates a singularity at x = 0.275, and strongly 
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suggests a conjugate pair of singularities very c!ose to the imaginary x-axis at x k0.45.  
No other singularities are clearly discernible. As x, = p;' = 0.2409, the singularity at 
~ ~ 0 . 2 7 5  is well beyond the critical value of x, and so we conclude that exponent 
universality holds for the SAW generating function on the triangular and honeycomb 
lattices. This result is of course already widely accepted. 

For the trail substitution function, a similar analysis gives a seemingly better 
converged sequence of estimates of singularity position. The singularities that are 
clearly indicated are at z = 0.30, z = 10.30i and z = -0.25 i 0.3i. In this case z, = 0.2210, 
and again the substitution function g(z) appears t o  be free of singularities in the 
physical disc /zI 2,.  This then implies the same exponent universality as for walks. 
As we have previously shown that the honeycomb lattice trail and SAW problem have 
the same exponent, this result implies that universality extends to the trails problem also. 

Another useful aspect of the substitution functions is that they give unbiased 
estimates of the triangular lattice connective constants from (5.10) and (5.1 I ) .  We 
have done this in two ways. Firstly, by truncating the substitution function at succes- 
sively higher terms, and solving the resulting polynomials obtained from (5.10) and 
(5.1 1) we get a sequence of estimates of x, and z,. Secondly, by forming Pad6 
approximants to f(x)-p;*,  the zeros of the numerator should give estimators of 
x, = l/pr, and analogous results for the trails problem. The results of these calculations 
are shown in table 5 .  For the SAW problem, the first method gives a monotonic sequence 

Table 5. Analysis of 'pseudo star-triangle substitution function' series as defined in text, 
in order to estimate connective constant for S A W  and trails problems. (a) Polynomial 
truncation method, (b )  Pade approximant method. 

Method ( a )  
n SAW trails 

7 0.241 43 
8 0.241 33 
9 0.241 22 

10 0.241 16 
I I  0.241 13 
12 0.241 10 
13 0.241 07 
14 0.241 05 
15 0.231 04 
16 0.241 02 
17 0.241 01 

0.221 43 
0.221 21 
0.221 02 
0.220 88 
0.220 8 I 
0.220 78 
0.220 76 
0.220 76 
0.220 76 
0.220 77 

~~ ~ 

Method (b)  
[ N I N -  11 [ N , ' N l  [ N I N +  1 1  

N SAW trails SAW trails SAW trails 

4 0.241 48 0.222 43+ 0.241 SO 0.220 so 0.242 101 0.220 76 
5 0.241 40 0.220 74 0.241 17 0.220 7 I 0.241 04 0.220 67 
6 0.240 95 0.220 58 0.241 04 0.220 70 0.241 03t  0.220 72 
7 0.241 00 0.220 72 0.240 96 0.220 76 0.240 '38 0.220 68 

8 0.240 97 0.220 67 

9 0.240 99 

0.240 95 
0.221 56 

0'240 97 {0.225 40 

1 Defective approximant. Pole-zero pair closer to the origin 
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of estimates of p i ' .  If the coefficients off continue to be non-negative (and we cannot 
prove this), then this sequence provides strict upper bounds to p i ' ,  yielding pT> 4.1492, 
which compares well with the best current estimate ~ ~ ~ 4 . 1 5 0 7 5 .  The Pad6 
approximants are also decreasing, though less regularly, and  suggest p;' < 0.240 97 or  

For the trails problem, the sigr, change in the coefficients at the 15th term (which 
we at first thought signified an  error in our series, but we now believe to be correct) 
means that the estimates cannot be monotonic, and we estimate from both methods 
A;' = 0.2209 * 0.0005, or  A T =  4.527 * 0.010. While less precise than the estimates of 9 2 ,  
this is an  unbiased estimate, in that no critical exponent is assumed. 

t(.T> 4.1499. 

6. Summary and discussion 

We find that the triangular lattice trail generating function is well fitted by 

T ( x ) = A , ( l  - A X ) - Y i - A ~ ( l  - A x ) - ~ ' ~ + A ~ ( ~  - A X ) - ~ " + O ( I  

where the critical parameters are shown in table 6 below. For the square and simple 
cubic lattices our analysis has provided estimates only of the leading critical parameters 
for reasons previously discussed, and these are also shown in table 6. For the square 
lattice our analysis shows that the exponent v is the same as that for SAW'S, and hence 
we conclude that the two problems belong to the same universality class. 

Table 6 .  Summary of estimates of critical parameters for trail generating functioii and 
mean square end-to-end distance exponent w, defined by T ( x )  = A ! (  1 - + 
A,(1 -A.~)-'+'+A,(I and (R ' , ) -an2" .  

~ 

A A 
(Lower A (Upper  

Y 3. v bound)  (Estimate) bound) A ,  A2 A3 

1" - 2.634 2.7215*0.002 2.851 1.10 _ -  Square 32 

Simple cubic 1.1615 - - (14.683) 4.843+0.003 4.929 0.95 _ _  
Triangular I 32 0.51 - 4.222 4.524i0.004 4.745 1.02 .-0.51 1 . 1  

We define a pseudo star-triangle transformation function for the trail generating 
function, and use its analyticity properties to show that the generating function for 
trails is the same as that for SAW'S.  

Thus we find all the series data, when carefully interpreted, are not inconsistent 
with the conclusion that the trails problem and SAW problein are in the same universality 
class. 

As well as our series estimates of the connective constant A, we have obtained 
upper and lower bounds to A. This derivation produced as a by-product, a proof that 
the connective constant for d 2 2-dimensional hyper cubic lattices for trails is strictly 
greater than the corresponding quantity for walks. This was already expected from 
the expansions obtained for the connective constant in I .  

We remark in closing that the trail generating function series are less well behaved 
than their SAW counterparts. Accordingly, for comparable accuracy, much longer series 
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than we have obtained would be necessary. This does not seem possible without a 
dramatically improved counting method. Alternatively, Monte Carlo methods should 
be readily applicable to trails and we are pursuing this approach. 
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