Lattice trails. II. Numerical results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18575
(http://iopscience.iop.org/0305-4470/18/4/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:25

Please note that terms and conditions apply.

Lattice trails: II. Numerical Results

A J Guttmann
Department of Mathematics, Statistics and Computer Science, The University of Newcastle, New South Wales 2308, Australia

Received 28 June 1984, in final form 14 August 1984

Abstract

A numerical study of the properties of lattice trails on the honeycomb, square, triangular and simple cubic lattices is made. Critical points are estimated for all lattices, and upper and lower bounds established. Extensive series have been obtained, and series analysis of both trail generating functions and mean square end-to-end distance series are not inconsistent with the conclusion that the problem is in the same universality class as the self-avoiding walk problem. A pseudo star-triangle transformation is defined, and the analyticity properties of that function, coupled with previous exact results, clearly supports that conclusion for the triangular lattice, as well as providing excellent unbiased critical point estimates.

We also show that the connective constant for $d \geqslant 2$-dimensional hypercubic trails is strictly greater than the corresponding quantity for SAw's.

1. Introduction

In a previous paper (Guttmann 1985) hereafter referred to as I we developed a number of exact results about lattice trails. The fundamental question is whether this problem belongs to the same universality class as does the self-avoiding walk (saw) problem, and we showed in I that this question can be answered in the affirmative for the honeycomb lattice, and for the L lattice (an oriented square lattice in which each step must be perpendicular to its predecessor). Recent series work by Zhou and Li (1984) raises the possibility that the two problems belong to different universality classes, and the purpose of this paper is to investigate our extended series expansions for the trail generating function and mean square end-to-end distances in order to establish critical point, critical exponent and amplitude estimates. We also obtain upper and lower bounds on the connective constants for some two- and three-dimensional lattices.

The layout of the paper is as follows. In $\S 2$ we discuss and analyse our data on two-dimensional series, and in $\S 3$ we do the same for the three-dimensional simple cubic lattice series. Section 4 is devoted to obtaining upper and lower bounds as well as proving that the connective constant for the $d \geqslant 2$-dimensional hypercubic lattice SAW series is less than that for trails. In § 5 we define a star-triangle substitution function, and argue on the basis of its singularity distribution that the triangular trails and sAw problem belong to the same universality class. Section 6 provides a summary of our results.

2. Two-dimensional lattices

In table 1 we give the series coefficient t_{n} of the trail generating function (TGF)

$$
\begin{equation*}
T(x)=\sum_{n \geqslant 0} t_{n} x^{n} ; \quad t_{0}=1 \tag{2.1}
\end{equation*}
$$

for the honeycomb (h), square (s) triangular (t) and simple cubic (sc) lattices. The expansions for the s and t lattices were obtained to 22 and 16 terms respectively. We used a simple back-tracking algorithm, similar to that used to generate saws, as described in Guttmann (1984). The program was written in FORTRAN and run on a Perkin-Elmer 3220 mini-computer using the Unix V7 operating system. The program was totally CPU bound, to the extent that re-writing it in C produced a time saving of

Table 1. Coefficients of the trail generating function for various lattices.

N	Honeycomb	Square	Triangular	Simple cubic
0	1	1	1	1
1	3	4	6	6
2	6	12	30	30
3	12	36	150	150
4	24	108	738	750
5	48	316	3570	3726
6	96	916	17118	18438
7	186	2628	81498	90966
8	360	7500	385710	447918
9	696	21268	1817046	2201622
10	1344	60092	8528478	10809006
11	2562	169092	39903462	52999446
12	4872	474924	186198642	259668942
13	9288	1329188	866861394	1271054982
14	17664	3715244	4027766490	6218232414
15	33384	10359636	18681900270	30399142614
16	63120	28856252	86518735722	
17	119280	80220244		
18	225072	222847804		
19	423630	618083972		
20	797400	1713283628		
21	1499256	4742946484		
22	2817216	13123882524		
23	5286480			
24	9918768			
25	18592080			
26	34840848			
27	65228874			
28	122105496			
29	228402168			
30	427176336			
31	798373662			
32	1491985800			
33	2786515176			
34	5203816992			
35	9712725234			
36	18127267800			

less than 3%. Total run time was $50-150$ hours on each lattice. Problems of integer overflow also occurred, but these were overcome by noting the (machine-dependent) property that if $2^{31}<i<2^{32}$, then i is stored as $j=i-2^{32}$.

For the honeycomb lattice we list 36 coefficients, obtained from the counting theorem given in I and the published data on honeycomb saw's and polygons. It is also known that the connective constant $\lambda=(2+\sqrt{2})^{1 / 2}$ for this lattice (Nienhuis 1982, 1984) and that the critical exponent $\gamma=43 / 32$ where $T(x) \sim A(1-\lambda x)^{-\gamma}$. Further, the amplitude A is exactly $4 /(2+\sqrt{2})$ times that for saws, as proved in I.

In table 2 we present additional configurational information on the square lattice, including mean square end-to-end distances and other quantities used in establishing bounds.

Table 2. Square lattice configurational data. $\rho_{n} c_{n}=\Sigma_{c_{n}} r^{2},\left\langle R_{n}^{2}\right\rangle=\rho_{n} c_{n} / c_{n}$, bridging trails and irreducible bridging trails defined in text.

				Irreducible bridging
n	$c_{n} \rho_{n}$	$\left\langle R_{n}^{2}\right\rangle$	Bridging trails	trails
1	4	1.000000000	1	1
2	32	2.666666667	3	2
5	164	4.555555556	7	2
4	704	6.518518518	17	2
5	2748	8.696202528	41	2
6	10096	11.02183406	101	4
7	35524	13.51750381	259	18
8	121056	16.14080000	669	48
9	402420	18.92138424	1731	96
10	1311504	21.82493510	4499	194
11	4205476	24.87093417	11705	398
12	13304864	2801472236	30623	992
13	41612324	31.30657514	80443	2614
14	128878736	34.68917142	211851	6496
15	395767092	38.20279902	558999	15512
16	1206315296	41.80429586	1477983	37536
17	3652739252	45.53388359	3914393	92366
18	10995977424	49.34299208	10384023	231544
19	32927997988	53.27431140	27585099	583442
20	98139646880	57.28161132	73366563	1464452
21	291246749300	61.40629044	195341557	3680362
22	860965104720	65.60292684	520640553	9310622

We first analyse the mean square end-to-end distance data, which we expect to be more useful in that the 'critical point' is precisely known. As we are only interested in the answer to the question 'is the exponent the same as, or different from the corresponding exponent for the sAw model?', we focus on the exponent difference by computing $\left\langle R_{n}^{2}\right\rangle_{\mathrm{SAW}} /\left\langle R_{n}^{2}\right\rangle_{\text {trails }}$. Denoting the corresponding exponents by $2 \nu_{\mathrm{s}}$ and $2 \nu_{\mathrm{t}}$ for saw's and trails respectively, we expect that

$$
r_{n}=\left\langle R_{n}^{2}\right\rangle_{\mathrm{SAW}} /\left\langle R_{n}^{2}\right\rangle_{\mathrm{trails}} \sim A n^{\phi}
$$

where $\phi=2\left(\nu_{\mathrm{s}}-\nu_{\mathrm{t}}\right)$.

In order to estimate the exponent ϕ, we form the sequence $\left\{\phi_{n}\right\}$, where $\phi_{n}=$ $\ln \left(r_{n} / r_{n-2}\right) / \ln [n /(n-2)]$. Extrapolants of ϕ_{n}, formed from $\theta_{n}=\left[n \phi_{n}-(n-2) \phi_{n-2}\right] / 2$ are also formed. (Alternate terms are used to minimise the oscillations characteristic of a loose-packed lattice.) In table 3 we show the data and the two sequences $\left\{\phi_{n}\right\}$ and $\left\{\theta_{n}\right\}$. It is clear that ϕ_{n} is decreasing, and the last eight extrapolants $\left\{\theta_{n}\right\}$ are all less than 0.008 in absolute value, implying that $\left|\nu_{s}-\nu_{\mathrm{t}}\right|<0.004$. The conclusion that they are equal seems inescapable.

Table 3. Analysis of square lattice mean square end-to-end distance series. $\left\{\phi_{n}\right\}$ and $\left\{\theta_{n}\right\}$ appear to be approaching zero.

n	$\left\langle R_{n}^{2}\right\rangle$ SAW's	$\left\langle R_{n}^{2}\right\rangle$ trails	r_{n}	ϕ_{n}	θ_{n}
5	9.56338028	8.69620253	1.099719	0.186081	0.465202
6	12.57435897	11.02183406	1.140859	0.135204	0.183549
7	15.55616943	13.51750381	1.150817	0.134980	0.007229
8	19.01284652	16.14080000	1.177937	0.111175	0.039089
9	22.41135972	18.92138424	1.184446	0.114611	0.043318
10	26.24253968	21.82493510	1.202411	0.092156	0.016078
11	30.01765703	24.87093417	1.206937	0.093739	-0.000183
12	34.18699297	28.01472236	1.220322	0.081101	0.025827
13	38.30434033	31.30657514	1.223524	0.081705	0.015515
14	42.78643758	34.68917142	1.233423	0.069273	-0.001693
15	47.21774661	38.20279902	1.235976	0.070761	-0.000374
16	51.99250070	41.80429586	1.243712	0.062208	0.012755
17	56.71641165	45.53388359	1.245587	0.061886	-0.004676
18	61.76646571	49.34299208	1.251778	0.054884	-0.003708
19	66.76578272	53.27431140	1.253245	0.055110	-0.002491
20	72.07654979	57.28161132	1.258284	0.049205	-0.001911
21	77.33674450	61.40629044	1.259427	0.049163	-0.007324
22	82.89581890	65.60292684	1.263599	0.044226	-0.005559

Our analysis of the trail generating function is less successful because, in comparing it to the walk generating function we are seeking a second-order effect. That is, the dominant difference is in the critical points, and any exponent difference will be a secondary effect, whereas for the mean square distance series, the critical point is the same, being 1. We have tried several standard methods of analysis. Firstly, Dlog Padé approximants suggest a critical point and critical exponent of 0.2213 and 1.41 respec tively for the triangular lattice, and 0.3679 and 1.39 respectively for the square lattice. The estimates of the critical parameters are slowly decreasing, and are clearly some way away from the SAw value of 1.34375 . A careful study of the distribution of singularities in the complex plane, as estimated by Dlog Padé approximants, gives some clue as to the reason for this slow convergence. Taking the triangular lattice first, the approximants to the saw series suggest a branch cut along the positive real axis from $x_{\mathrm{c}} \approx 0.241$ to ∞, plus two conjugate pairs of singularities at $x=(-0.40 \pm 0.32 \mathrm{i})$ and $x=(-0.20 \pm 0.60 \mathrm{i})$. For the trails series on the other hand, as well as a branch cut from $x_{\mathrm{c}} \approx 0.221$ to ∞, there are two further branch cuts along the imaginary axis from $\pm 0.30 \mathrm{i}$. A conjugate pair of singularities at $x=(-0.50 \pm 0.30 \mathrm{i})$ can also be discerned. Thus for the trails case, we have non-physical singularities much loser to the physical disc $|x| \leqslant x_{\mathrm{c}}$ than for the SAW case, which we expect to slow the rate of convergence (Baker and Graves-Morris 1981). A similar situation exists for the square lattice series,
where again there are branch cuts on the imaginary axis, with non-physical singularities quite close to the physical disc.

If we assume that $\gamma=1.34375$, biased Padé approximants to $[f(x)]^{1 / \gamma}$ give connective constant estimates of $\lambda=4.525$ (triangular) and 2.7215 (square).

A ratio method analysis of the triangular lattice data is also quite instructive, and clearly shows the steady worsening of behaviour as one passes from the Ising problem to the saw problem to the trails problem. Taking the values $\gamma=1.75$ for the Ising model susceptibility and $\gamma=1.34375$ for the saw and trails generating function, we analyse the three series, given by $f(x)=\Sigma c_{n} x^{n}$ by forming the following sequences:

$$
\begin{aligned}
& r_{n}=c_{n} / c_{n-1} \\
& \beta_{n}=r_{n} /(1+(\gamma-1) / n) \\
& \mu_{n}=\left[n^{2} \beta_{n}-(n-1)^{2} \beta_{n-1}\right] /(2 n-1) \\
& \delta_{n}=\left[n^{3} u_{n}-(n-1)^{3} u_{n-1}\right] /\left(3 n^{2}-3 n+1\right)
\end{aligned}
$$

Each sequence should give successively more accurate estimates of the connective constant (or its Ising analogue). In table 4 we see that for the Ising model the last entries in the sequence $\left\{\delta_{n}\right\}$ are accurate to six figures, the exact value being $2+\sqrt{3}=$ $3.7320508 \ldots$ For the SAW problem, the last entries in the sequence $\left\{\delta_{n}\right\}$ are in excellent agreement with the current 'best' estimate (Guttmann 1984) of 4.15075 , being accurate to five figures. For the trails problem, the sequences $\left\{\beta_{n}\right\}$ and $\left\{\mu_{n}\right\}$ are still changing in the fourth decimal digit with increasing n, and from the sequence $\left\{\delta_{n}\right\}$ one cannot say any more than $\lambda=4.525 \pm 0.006$, and even this may be considered excessively optimistic.

This behaviour is, we believe, due to two factors. The first we have already discussed, and that is the presence of non-physical singularities close to the physical disc. The second factor is the possible presence of confluent singularities. The rapid change in

Table 4. Analysis of triangular lattice data for the connective constant of the Ising, SAW and trails problem. As discussed in the text, it is clear that the series are increasingly difficult to analyse for this problem heirarchy.

		Ising model n		r_{n}

Table 4. (continued)

n	SAW problem			
	r_{n}	β_{n}	μ_{n}	$\delta_{\text {n }}$
2	5.0000000	4.2666667	4.2005168	4.8005906
3	4.6000000	4.1271028	4.0154517	3.9375296
4	4.4782609	4.1238661	4.1197047	4.1957812
5	4.4174757	4.1333106	4.1501008	4.1819919
6	4.3758242	4.1387106	4.1509831	4.1521950
7	4.3430437	4.1397523	4.1426371	4.1284423
8	4.3199954	4.1420180	4.1494195	4.1631849
9	4.3016731	4.1434176	4.1486866	4.1469573
10	4.2869207	4.1444551	4.1488779	4.1493925
11	4.2749161	4.1453732	4.1497454	4.1523664
12	4.2648407	4.1460730	4.1497544	4.1497845
13	4.2563043	4.1466571	4.1500216	4.1510060
14	4.2489675	4.1471404	4.1501653	4.1507425
15	4.2425908	4.1475429	4.1502635	4.1506908
16	4.2369982	4.1478835	4.1503556	4.1507863
17	4.2320517	4.1481732	4.1504203	4.1507448
18	4.2276451	4.1484217	4.1504742	4.1507623
	Trails problem			
n	r_{n}	β_{n}	μ_{n}	δ_{n}
2	5.0000000	4.2666667	4.2005168	4.8005906
3	5.0000000	4.4859813	4.6614330	4.8555030
4	4.9200000	4.5306475	4.5880754	4.5345442
5	4.8373984	4.5262207	4.5183509	4.4451972
6	4.7949580	4.5351327	4.5553872	4.6062612
7	4.7609534	4.5381002	4.546 ? 181	4.5308937
8	4.7327542	4.5377718	4.5366989	4.5171757
9	4.7109123	4.5376012	4.5369589	4.5375724
10	4.6935950	4.5376145	4.5376712	4.5395874
11	4.6788491	4.5370658	4.5344532	4.5247311
12	4.6662278	4.5362822	4.5321594	4.5244692
13	4.6555731	4.5356403	4.5319433	4.5311470
14	4.6463789	4.5350278	4.5311936	4.5281825
15	4.6382779	4.5343654	4.5298883	4.5242121
16	4.6311529	4.5337481	4.5292681	4.5263648

the sequencies $\left\{\beta_{n}\right\}$ and $\left\{\mu_{n}\right\}$ are indicative of the presence of a strong confluent term. A variety of methods were used to detect this term, but we found that none of the conventional methods were successful. This parallels our experience (Guttmann 1984) with the triangular lattice chain generating function. An alternative approach we adopted was to fit all the coefficients, suitably weighted, to an assumed functional form

$$
T(x)=\sum_{n \geqslant 0} a_{n} x^{n}=A_{1}(1-\lambda x)^{-\gamma}+A_{2}(1-\lambda x)^{-\gamma+\Delta}+A_{3}(1-\lambda x)^{-\gamma+1}
$$

with γ fixed at $43 / 32$. The fitting was done by the nonlinear regression program P3R, available on the BMDP package. The coefficients were weighted by λ^{n}, (with $\lambda \approx 4.53$) so that higher-order coefficients were given much greater weight than earlier coefficients. This is in principle a powerful alterna:ive method of series analysis, but much more
work needs to be done before it can be widely used. At present it is extremely sensitive to starting estimates and is also sensitive to weighting functions. A large number of trials had to be carried out before we could be confident that we had found a global minimum rather than a local minimum. We are pursuing this approach in the hope that a new and powerful series analysis method will evolve, but for the present we simply state the results for this case, which are:

$$
\begin{array}{ll}
\lambda=4.5256, & \Delta=0.51, \\
A_{1}=1.023, & A_{2}=-0.513,
\end{array} A_{3}=1.054 .
$$

No error estimates are quoted, though we expect λ to be accurate to about four significant figures, Δ to one figure, A_{1} to two figures, and A_{2}, A_{3} to one figure. The results as quoted fit the data extremely well, and it is for this reason we give more significant figures than the accuracy of the parameters warrants. The noteworthy feature is the presence of a strong confluent term, and when this is included the data is entirely consistent with our assumption that the trails problem belongs to the same universality class as the saw problem.

For the square lattice, the characteristic odd-even oscillation added an extra complication to the above analysis. In the present primitive state of the new analysis method, we did not therefore pursue the square lattice analysis by that method. Apart from the Pade analysis mentioned previously, we also used the generalised ratio method of Sykes et al (1972), as applied by them to the SAw series. We again assumed that the exponent $\gamma=43 / 32$, and that the antiferromagnetic exponent was similar to that for walks (though the results were insensitive to this assumption). Our analysis gives $\lambda=2.7213 \pm 0.0007$, in excellent agreement with the Pade analysis. We believe this result rules out the possibility that $\lambda=\mathrm{e}=2.71828 \ldots$ as suggested by Malakis (1975) and Zhou and Li (1984).

We have also obtained estimates for the critical amplitudes by forming Padé approximants to $\left.(1 / \lambda-x)[T(x)]^{1 / \gamma}\right|_{x=1 / \lambda}$. Using the estimates for λ quoted earlier, and $\gamma=43 / 32$, the approximants were well converged, and we estimate $A_{1}=1.10$ (square) and $A_{1}=0.99$ (triangular), where $T(x) \sim A_{1}(1-\lambda x)^{-\gamma}$. The estimate of A_{1} agrees to within 3% with that found by our nonlinear regression, which latter method also takes into account the confluent correction term.

3. Three-dimensional lattice

In table 1 we give the first 15 coefficients of the simple cubic lattice trail generating function-again representing about 50 hours CPU time on a PE 3220 mini-computer.

Pade analysis gave results consistent with the pattern observed for the twodimensional series. Dlog Padé approximants were more scattered than their saw counterparts, and many were defective. They appeared to converge to $\gamma \simeq 1.12, \lambda \simeq$ 4.8497. This value of γ is significantly lower than the saw exponent, believed to be around $\gamma \simeq 1.1615$ (Le Guillou and Zinn Justin 1980) from RG analysis. Again, we consider that this small discrepancy is due to closer non-physical singularities and confluent correction terms.

Padé approximants to $[T(x)]^{1 / \gamma}$ with $\gamma=1.1615$ give $\lambda=4.8426 \pm 0.008$, while the confluent singularity analysis method of Adler et al (1982), while giving no convincing
evidence of a confluent singularity, did indicate a critical point of $1 / \lambda \approx 0.2065=$ $1 / 4.8426$ with an exponent of $\gamma \simeq 1.16$.

The extended ratio analysis (Sykes et al 1972) of the previous section was also used, and gave $\lambda=4.843 \pm 0.002$, in agreement with the above analyses.

This was in fact the worst behaved trail generating function series of the three, and the only conclusions we can draw are that (a) there is no evidence for a different universality class for the trails problem in three dimensions compared to the walks problem and (b) if we accept that $\gamma=1.1615$, the connective constant is then $\lambda=$ 4.8426 ± 0.002.

For the amplitude, Padé analysis as described in the previous section gave $A_{1} \simeq 0.95$.

4. Bounds on connective constants

The various methods for determining upper and lower bounds on the value of the connective constant for self-avoiding walks are discussed in Guttmann (1983). These methods can all be applied mutatis mutandis to the trails problem.

To find upper bounds, we use the method of Ahlberg and Janson (1982), which, after making the necessary changes appropriate to the trails problem, gives

$$
\begin{equation*}
\lambda \leqslant \min \left(\lambda_{a}, \lambda_{b}\right) \tag{4.1}
\end{equation*}
$$

where λ is the connective constant for trails,

$$
\begin{equation*}
\lambda_{a}=\left(t_{n} / t_{1}\right)^{1 /(n-1)} \tag{4.2}
\end{equation*}
$$

and λ_{b} is the positive root of

$$
\begin{equation*}
q x^{n-1}=\left[t_{n}-(q-2) t_{n-1}\right] x+(q-2)\left[(q-1) t_{n-1}-t_{n}\right] \tag{4.3}
\end{equation*}
$$

where q is the coordination number of the lattice. From our configurational data in table 1 we readily obtain

$$
\begin{equation*}
\lambda<4.929(\mathrm{sc}), \quad \lambda<4.745 \text { (triangular) }, \quad \lambda<2.851 \text { (square) } . \tag{4.4}
\end{equation*}
$$

To find lower bounds for the hypercubic lattice, we apply the method of Kesten (1963). Consider a d-dimensional hypercubic lattice, with unit lattice spacing. A terminally attached trail (TAT) is a trail whose first step, rooted at the origin, is in the $+x$ direction, and which subsequently never crosses the $x=1$ hyperplane. We denote the cardinality of n-step TAT's by r_{n}. Next we define bridging trails, with cardinality b_{n}, as those TAT's whose maximal x-coordinate is equal to the x-coordinate of the end-point vertex of the tat. Finally, we define irreducible bridging trails, with cardinality s_{n}, as those trails which cannot be decomposed into two concatenated bridging trails. Clearly $t_{n} \geqslant r_{n} \geqslant b_{n} \geqslant s_{n}$.

Next, we outline a proof that $\lim _{n \rightarrow \infty} r_{n}^{1 / n}=\lim _{n \rightarrow \infty} b_{n}^{1 / n}=\lambda$. To prove this, we first define loop trails as trails whose first and last vertex are coincident. Let the cardinality of n-step loop trails be l_{n}. Following Hammersley (1961) we can transform these into bridging trails by first defining a right-most, top-most vertex and a left-most, bottommost vertex and then cutting the loop trail at the first mentioned vertex and reflecting the 'top half' of the trail about the hyperplane through the other specified vertex (see figure $1(a)$). Again following Hammersley (1961), it is possible to show that $\lim _{n \rightarrow \infty} l_{n}^{l / n}=\lambda$, while in I we proved that $\lim _{n \rightarrow x} t_{n}^{1 / n}=\lambda$. The construction above shows that each loop trail can be transformed into a distinct bridging trail, so that

Figure 1. (a) shows the transformation of a polygon into a bridge. LBV $=$ left, bottom vertex; RTV = right, top vertex. (b) shows a 7 -step irreducible bridging trail that is not an irreducible bridging walk. Extending this trail in the $-y$ direction produces a similar realisation for any greater number of steps.
$t_{n} \geqslant r_{n} \geqslant b_{n} \geqslant l_{n}$. This observation is sufficient to complete the proof that $\lim _{n \rightarrow \infty} r_{n}^{1 / n}=$ $\lim _{n \rightarrow \infty} b_{n}^{1 / n}=\lambda$.

The next step is to point out the lemma

$$
\begin{equation*}
b_{n}=\sum_{k=1}^{n} s_{k} b_{n-k} \quad n \geqslant 1 . \tag{4.5}
\end{equation*}
$$

The proof is given by Kesten (1962) for sAw's, and follows from the observation that each bridging trail can be expressed as the concatenation of an irreducible bridging trail of length $m \in[1, n]$ and a bridging trail of length $p=(n-m) \in[0, n-1]$ since the first step of every bridging trail is an irreducible bridging trail.

If we now define the corresponding generating functions $B(x)=\Sigma_{n \geqslant 0} b_{n} x^{n}$ and $S(x)=\Sigma_{n \geqslant 1} s_{n} x^{n}$, it follows from the above lemma that $B(x)=1 /[1-S(x)]$, and hence that λ^{-1} is the unique positive root of $S(x)=1$. The proof of these last two remarks follows precisely Kesten's proof for the saw analogue. Further, if λ_{N} is the (unique) positive root of the polynomial

$$
\begin{equation*}
\sum_{n=1}^{N} s_{n} \lambda_{N}^{-n}=1 \tag{4.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda_{N} \leqslant \lambda . \tag{4.7}
\end{equation*}
$$

Thus the enumeration of irreducible bridges allows a monotonic, non-decreasing sequence of lower bounds on λ to be obtained, by solving the sequence of polynomials given by (4.6) with increasing N.

In table 2 we give the results for the first 22 terms of $B(x)$ and $S(x)$ for the square lattice. From these coefficients and the result (4.7) we finally obtain the bound λ (square) >2.6346.

Following a suggestion of Whittington (private communication) we can also use a similar approach to prove that $\lambda>\mu$ for d-dimensional hypercubic lattices, where μ is the connective constant for self-avoiding walks, as follows. Let s_{n} be the cardinality of n-step irreducible bridging trails, as defined above, and let w_{n} be the corresponding quantity for self-avoiding walks. Then from Kesten's result for saw's, and our analogous results for trails quoted above, we have that $W(x)=\sum_{n=1}^{\infty} w_{n} x^{n}$ is analytic in the disc $|x|<\mu^{-1}$ and continuous and strictly increasing in the interval $0 \leqslant x \leqslant \mu^{-1}$ and $W\left(\mu^{-1}\right)=1$. An analogous result holds for the trails problem, where $S(x)=$ $\Sigma_{n=1}^{\infty} s_{n} x^{n}$ is the analogue of $W(x)$ and $S\left(\lambda^{-1}\right)=1$. By explicit construction (figure $1(b))$ we show that $w_{n}<s_{n}$ for $n>6$, while it is obvious by direct enumeration that $w_{n}=s_{n}$ for $n \leqslant 6$ (see table 2). Thus $W(x)<S(x)$ for all x such that $0<x \leqslant$ $\min \left(\mu^{-1}, \lambda^{-1}\right)$. It thus immediately follows that $\lambda^{-1}<\mu^{-1}$, or $\lambda>\mu$.

For the simple cubic lattice we have not generated bridging trails, but a useful numerical 'bound' is the SAw connective constant, $\mu(\mathrm{sc})=4.6835$. This is of course only an estimate of μ, so doesn't constitute a bound in the proper sense, unlike the square lattice result. A very weak bound is provided by the saw lower bound (Guttmann 1983), $\mu>4.352$.

For the triangular lattice we have already proved in I that $\lambda>4.222$. Summarising the results of this section, we find

$$
\begin{array}{rlr}
2.634 & <\lambda(\text { square }) & <2.851 \\
4.222 & <\lambda(\text { triangular }) & <4.745 \tag{4.8}\\
(4.683) & <\lambda(\mathrm{sc}) & <4.929
\end{array}
$$

where the sc 'lower bound' is parenthesised to indicate its second-class status!

5. Substitution functions

As discussed in I, by relating trails on the triangular lattice to those on the honeycomb lattice we can obtain an analogue of the star-triangle transformation for trails. For the Ising problem, Fisher (1959) has given a transformation that relates the susceptibilities χ_{T} and χ_{H} of the triangular and honeycomb lattice respectively. That is

$$
\begin{equation*}
\chi_{\mathrm{T}}(v)=\frac{1}{2}\left\{\chi_{\mathrm{H}}(w)+\chi_{\mathrm{H}}(-w)\right\} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
w^{2}=h(v)=v(1+v) /\left(1+v^{3}\right)=v+v^{2}-v^{4}-v^{5}+v^{7}+v^{8}-v^{10}-\ldots \tag{5.2}
\end{equation*}
$$

For the self-avoiding walk problem we denote by C_{T} and C_{H} the chain generating functions of the triangular and honeycomb lattice saw model respectively. Then by analogy we write

$$
\begin{equation*}
C_{\mathrm{T}}(x)=\frac{1}{2}\left\{C_{\mathrm{H}}(y)+C_{\mathrm{H}}(-y)\right\} \tag{5.3}
\end{equation*}
$$

which implicitly defines the function f through

$$
\begin{equation*}
y^{2}=f(x) \tag{5.4}
\end{equation*}
$$

Following the development of Guttmann and Sykes (1973) we can obtain the first 17 terms of the series expansion of f from the available expansions of C_{T} and C_{H}. In that way we find

$$
\begin{align*}
f(x)=x+x^{2}- & 2 x^{4}-x^{5}+3 x^{6}+4 x^{7}+12 x^{8}+57 x^{9}+127 x^{10}+253 x^{11}+907 x^{12} \\
& +4224 x^{13}+14162 x^{14}+43817 x^{15}+150650 x^{16}+538790 x^{17}+\ldots \tag{5.5}
\end{align*}
$$

which corrects the last two coefficients of Guttmann and Sykes (1973).
For the trails problem we denote by T_{T} and T_{H} the trail generating functions for the triangular and honeycomb lattices respectively. Then we write

$$
\begin{equation*}
T_{T}(z)=\frac{1}{2}\left\{T_{\mathrm{H}}(u)+T_{\mathrm{H}}(-u)\right\} \tag{5.6}
\end{equation*}
$$

which defines the function g through

$$
\begin{equation*}
u^{2}=g(z) \tag{57}
\end{equation*}
$$

From the coefficients in table 1 and equations (5.6) and (5.7) we obtain the first 16 terms in the expansion of g as

$$
\begin{align*}
g(z)=z+z^{2}+ & z^{3}+3 z^{4}+3 z^{5}+13 z^{6}+47 z^{7}+73 z^{8}+273 z^{9}+925 z^{10}+2089 z^{11} \\
& +4935 z^{12}+10403 z^{13}+22319 z^{14}-25515 z^{15}-491241 z^{16} \ldots \tag{5.8}
\end{align*}
$$

For the Ising model, the critical temperatures are related through

$$
\begin{equation*}
\nu_{\mathrm{H}}^{-2}=h\left(\nu_{\mathrm{T}}^{-1}\right) \tag{5.9}
\end{equation*}
$$

where $\nu_{\mathrm{H}}=1 / \tanh \left(J / k T_{\mathrm{c}}^{\mathrm{H}}\right)=\sqrt{3}$ and $\nu_{\mathrm{T}}=1 / \tanh \left(J / k T_{\mathrm{c}}^{\mathrm{T}}\right)=2+\sqrt{3}$. Further, it follows from (5.1) that the susceptibilities on the two lattices have the same critical exponent unless the substitution function h is non-analytic at $v=\nu_{\mathrm{T}}^{-1}$. If h is non-analytic, further investigation is required to determine the change-if any-to the critical exponent. From (5.2) it is clear that h is non-analytic only at the cube roots of -1 , thus confirming the well known universality of exponents for the two-dimensional Ising model.

For the saw and trails problem we have the corresponding results

$$
\begin{equation*}
\mu_{\mathrm{H}}^{-2}=f\left(\mu_{\mathrm{T}}^{-1}\right)=(2+\sqrt{2})^{-1} \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\mathrm{H}}^{-2}=g\left(\lambda_{\mathrm{T}}^{-1}\right)=(2+\sqrt{2})^{-1} \tag{5.11}
\end{equation*}
$$

where μ and λ are the connective constants for the SAW and trails problem respectively, and we have used Nienhuis' (1982) result for μ_{H} and our earlier result (I) that $\lambda_{\mathrm{H}}=\mu_{\mathrm{H}}$.

Unlike the situation with the Ising problem f and g are not known except through their series expansions. If we accept the (unproven) assumption that a critical exponent exists for the previously defined generating functions, it again follows that this exponent must be the same for the triangular and honeycomb lattices provided that the substitution function is non-singular at $x=x_{\mathrm{c}}=1 / \mu_{\mathrm{T}}$ for the sAW problem and at $z=z_{\mathrm{c}}=1 / \lambda_{\mathrm{T}}$ for the trails problem.

Accordingly, we have investigated the singularity structure of the functions f and g by studying Padé approximants to the logarithmic derivative of f and g. It is well known (see e.g. Gaunt and Guttmann 1974) that the distribution of zeros of the denominator polynomials gives a good estimate of the singularity distribution.

Firstly, for the saw substitution function f, a range of diagonal and off-diagonal Dlog Padé approximants clearly indicates a singularity at $x \simeq 0.275$, and strongly
suggests a conjugate pair of singularities very close to the imaginary x-axis at $x \approx \pm 0.45$ i. No other singularities are clearly discernible. As $x_{\mathrm{c}}=\mu_{\tau}^{-1} \approx 0.2409$, the singularity at $x \approx 0.275$ is well beyond the critical value of x, and so we conclude that exponent universality holds for the saw generating function on the triangular and honeycomb lattices. This result is of course already widely accepted.

For the trail substitution function, a similar analysis gives a seemingly better converged sequence of estimates of singularity position. The singularities that are clearly indicated are at $z \approx 0.30, z \approx \pm 0.30 \mathrm{i}$ and $z=-0.25 \pm 0.3 \mathrm{i}$. In this case $z_{\mathrm{c}} \approx 0.2210$, and again the substitution function $g(z)$ appears to be free of singularities in the physical disc $|z| \leqslant z_{\mathrm{c}}$. This then implies the same exponent universality as for walks. As we have previously shown that the honeycomb lattice trail and SAw problem have the same exponent, this result implies that universality extends to the trails problem also.

Another useful aspect of the substitution functions is that they give unbiased estimates of the triangular lattice connective constants from (5.10) and (5.11). We have done this in two ways. Firstly, by truncating the substitution function at successively higher terms, and solving the resulting polynomials obtained from (5.10) and (5.11) we get a sequence of estimates of x_{c} and z_{c}. Secondly, by forming Padé approximants to $f(x)-\mu_{\mathrm{H}}^{-2}$, the zeros of the numerator should give estimators of $x_{c}=1 / \mu_{\mathrm{T}}$, and analogous results for the trails problem. The results of these calculations are shown in table 5. For the saw problem, the first method gives a monotonic sequence

Table 5. Analysis of 'pseudo star-triangle substitution function' series as defined in text, in order to estimate connective constant for SAW and trails problems. (a) Polynomial truncation method, (b) Padé approximant method.

Method (a)		
n	SAW	trails
7	0.24143	0.22143
8	0.24133	0.22121
9	0.24122	0.22102
10	0.24116	0.22088
11	0.24113	0.22081
12	0.24110	0.22078
13	0.24107	0.22076
14	0.24105	0.22076
15	0.24104	0.22076
16	0.24102	0.22077
17	0.24101	

N	[$N / N-1]$		Method (b)		$[N / N+1]$	
	SAW	trails	SAW	trails	SAW	trails
4	0.24148	0.22243^{+}	0.24150	0.22050	0.24210^{+}	0.22076
5	0.24140	0.22074	0.24117	0.22071	0.24104	0.22067
6	0.24095	0.22058	0.24104	0.22070	$0.24104{ }^{\dagger}$	0.22072
7	0.24100	0.22072	0.24096	0.22076	0.24098	0.22068
8	0.24097	0.22067	0.24097	$\left\{\begin{array}{l} 0.22156 \\ 0.22540 \end{array}\right.$	0.24095	
9	0.24099					

[^0]of estimates of $\mu_{\boldsymbol{T}}^{-1}$. If the coefficients of f continue to be non-negative (and we cannot prove this), then this sequence provides strict upper bounds to μ_{T}^{-1}, yielding $\mu_{\mathrm{T}}>4.1492$, which compares well with the best current estimate $\mu_{\mathrm{T}} \approx 4.15075$. The Padé approximants are also decreasing, though less regularly, and suggest $\mu_{\mathrm{T}}^{-1}<0.24097$ or $\mu_{T}>4.1499$.

For the trails problem, the sign change in the coefficients at the 15 th term (which we at first thought signified an error in our series, but we now believe to be correct) means that the estimates cannot be monotonic, and we estimate from both methods $\lambda_{\mathrm{T}}^{-1}=0.2209 \pm 0.0005$, or $\lambda_{\mathrm{T}}=4.527 \pm 0.010$. While less precise than the estimates of $\S 2$, this is an unbiased estimate, in that no critical exponent is assumed.

6. Sunimary and discussion

We find that the triangular lattice trail generating function is well fitted by

$$
T(x)=A_{1}(1-\lambda x)^{-\gamma}+A_{2}(1-\lambda x)^{-\gamma+\Delta}+A_{3}(1-\lambda x)^{-\gamma+1}+\mathrm{O}(1-\lambda x)^{1-\gamma}
$$

where the critical parameters are shown in table 6 below. For the square and simple cubic lattices our analysis has provided estimates only of the leading critical parameters for reasons previously discussed, and these are also shown in table 6 . For the square lattice our analysis shows that the exponent ν is the same as that for saw's, and hence we conclude that the two problems belong to the same universality class.

Table 6. Summary of estimates of critical parameters for trail generating function and mean square end-to-end distance exponent ν, defined by $T(x)=A_{1}(1-\lambda x)^{-\gamma}+$ $A_{2}(1-\lambda x)^{-\gamma+د}+A_{3}(1-\lambda x)^{-\gamma+1}$ and $\left\langle R_{n}^{2}\right\rangle \sim a n^{2 \mu}$.

	γ	Δ	ν	(Lower bound)	λ (Estimaie)	(Upper bound)	A_{1}	A_{2}	A_{3}
Square	$1 \frac{11}{32}$	-	$\frac{3}{4}$	2.634	2.7215 ± 0.002	2.851	1.10	-	-
Triangular	$1 \frac{11}{32}$	0.51	-	4.222	4.524 ± 0.004	4.745	1.02	-0.51	1.1
Simple cubic	1.1615	-	-	(14.683)	4.843 ± 0.003	4.929	0.95	-	-

We define a pseudo star-triangle transformation function for the trail generating function, and use its analyticity properties to show that the generating function for trails is the same as that for saw's.

Thus we find all the series data, when carefully interpreted, are not inconsistent with the conclusion that the trails problem and saw problem are in the same universality class.

As well as our series estimates of the connective constant λ, we have obtained upper and lower bounds to λ. This derivation produced as a by-product, a proof that the connective constant for $d \geqslant 2$-dimensional hypercubic lattices for trails is strictly greater than the corresponding quantity for walks. This was already expected from the expansions obtained for the connective constant in I.

We remark in closing that the trail generating function series are less well behaved than their SAW counterparts. Accordingly, for comparabie accuracy, much longer series
than we have obtained would be necessary. This does not seem possible without a dramatically improved counting method. Alternatively, Monte Carlo methods should be readily applicable to trails and we are pursuing this approach.

Acknowledgments

I would like to thank Professor S G Whittington for his suggested proof of the result in §4. I have also profited from discussions with Drs M F Sykes and D S Gaunt and A Sokal. Some of this work was done while a vistor to the Department of Mathematics, Institute of Advanced Studies, Australian National University, and I would like to thank Professor D W Robinson for his hospitality.

References

Adler J, Moshe M and Privman V 1982 Phys. Rev. B 261411
Ahlberg R and Janson S 1982 Upper bounds for the connectivity constant University of Uppsala technical report Baker G A Jr and Graves-Morris P 1981 Padé Approximants. Part I: Basic Theory (Reading, Mass: Addison-Wesley)
Fisher M E 1959 Phys. Rev. 113969
Gaunt D S and Guttmann A J 1974 in Phase Transitions and Critical Phenomena vol 3 ed C Domb and M S Green (London: Academic)
Guttmann A J 1983 J. Phys. A: Math. Gen. 162233

- 1984 J. Phys. A: Math. Gen. 17455
- 1985 J. Phys. A: Math. Gen. 18567

Guttmann A and Sykes M F 1973 Aust. J. Phys. 26207
Hammersley J M 1961 Proc. Camb. Phil. Soc. 57516
Kesten H 1963 J. Math. Phys. 4960
Le Guillou J C and Zinn Justin J 1980 Phys. Rev. B 213976
Malakis A 1975 J. Phys. A: Math. Gen. 81885
Nienhuis B 1982 Phys. Rev. Lett. 491062

- 1984 J. Stat. Phys. 54731

Sykes M F, Guttmann A J, Watts M G and Roberts P D 1972 J. Phys. A: Math. Gen. 5653
Zhou Z C and Li T C 1984 J. Phys. A: Math. Gen. 17 2257-68

[^0]: + Defective approximant. Pole-zero pair closer to the origin.

